»CPCI-3311用户手册«

3U CompactPCI 处理器刀片 Intel® Core™ i7处理器QM77芯片组

变更历史

用户手册	6U CompactPCI 处理器刀片计算机, 芯片组	支持 Intel Core i7 处理器和 QM77
版本	变更描述	日期
Ver1.0	初始发行	2016-2-15
Ver2.0	部分描述更新	2021-5-12

安全提醒

本产品通过了严格的开发和测试流程,以使产品符合电气安全方面的各个要求。然而,不当的安装或使用可能会缩短产品的无故障寿命。因此,基于安全性和正确性的方面的考虑,请遵守以下准则。

- 1. 该设备的所有操作必须由熟练人员进行。
- 2. 为避免人体被电击或产品被损坏,在每次对主板、板卡进行拔插或重新配置时,必须确保系统电源是关闭的。
- 3. 电子线路板及其组件对静电比较敏感。因此,对线路板进行的各种操作必须非常小心,以确保产品的性能完整性。
- 4. 当本产品不使用时,请把他放入包装的防静电袋中。在拿板卡时,需佩戴静电保护手套,并且应该养成只触及其边缘部分的习惯。
- 5. 如果有可能,请在静电安全工作台对本产品进行包装或拆包装。在接触本产品前,可以先触摸其他金属器物来泄放掉手上的静电,以确保对本产品的安全。在从防静电保护袋中拿出板卡前,应将手先置于接地金属物体上一会儿(比如10秒钟),以释放身体及手中的静电。
- 6. 在对主板进行跳线设置时, 遵行防静电标准尤其重要。
- 7. 如果产品包含RTC电池,请确保RTC电池表面无导电物件。
- 8. 包括防静电袋防静电泡棉,以免发生短路。
- 9. 为避免频繁开关机对产品造成不必要的损伤,关机后,应至少等待30秒后再开机。

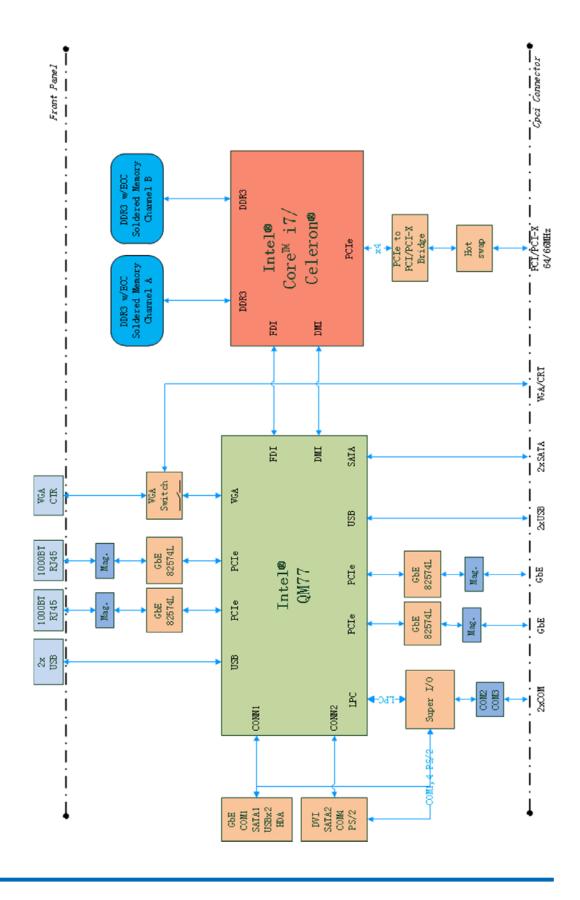
目录

第一章 产品概述	5
第二章 产品技术特性	6
2.1 功能指标	6
2.2 系统架构图	7
2.3 可靠性指标	8
2.4 环境性能指标	8
2.4.1 存储温度	8
2.4.2 工作温度	8
2.5 电源要求	8
第三章 产品结构及布局	9
3.1 板卡外形尺寸	
3.2 板卡元器件布局	9
3.2.1 板卡正面元器件布局	
3.2.2 板卡反面元器件布局	
3.2.3 二层板配置一板卡元器件布局	11
3.2.4 二层板配置二板卡元器件布局	
3.3 跳线设置	12
3.4 前面板功能示意图	
第四章 使用和维护	15
4.1 使用前准备	
4.2 开机流程	
4.3 正常运行指示	15
4.4 关机流程	15
4.5 复位	15
4.6 CPCI 主板维护	15
4.7 使用注意事项	16
4.8 维护注意事项	16
第五章 CPCI 信号接口定义	17
5.1 J1 信号定义	17
5.2 J2 信号定义	18

第一章 产品概述

该产品是一款基于 Intel i7 双核四线程(或四核八线程)的高性能 CPCI 刀片式军用计算机。产品采用二层板卡堆叠模块化设计,支持多种面板接口配置,具有很强的灵活性和接口扩展性,极大的满足了用户灵活多变的应用需求。

产品结构采用3U 8HP CompactPCI标准,有很强的可靠性、可维护性、可管理性,并与军用计算机的抗振动、抗冲击、抗宽温环境急剧变化等恶劣环境特性进行完美融合。产品特别注重DDR3、PCIe、USB、GbE和SATA等高速串行总线的信号完整性设计,以及高性能和宽温环境下的电源可靠性设计,在器件选型和工艺上,采用高度集成的电子元器件以及板贴生产工艺,最大限度地保障该CPCI计算机产品在车载、舰载、机载等多种恶劣环境下的可靠性运行!



第二章 产品技术特性

2.1 功能指标

- 产品基于Intel Core i7多核处理器和QM77 Express芯片组。
 - Intel Core i7-3555LE (LV), 2.5 GHz, 双核四线CPU(标配)。
 - Intel Core i7-3612QE 2.1GHz, 四核八线CPU(可选)
 - Intel QM77 Express 芯片组
 - 处理器采用22nm工艺,双核四线程处理机制,集成图形及内存控制器。
- 板载8GB双通道DDR3内存, 频率1333/1600 MHz。
- 前面板提供1个VGA接口,最大分辨率为2048×1536@75Hz。可通过跳线切换 到后出接口。
- 前面板支持1个DVI-D信号(仅配置一支持),最大分辨率为1920×1200@60Hz。
- 支持32bit、33/66 MHz CompactPCI总线扩展,符合PICMG 2.0规范。
- 3U8HP CompactPCI规格,采用欧卡结构。
- 前面板支持2个(配置一)或3个(配置二)10/100/1000Mbps网络接口。 后出2个10/100/1000Mbps网络接口,其中一路后出千兆网口为可选配置。
- 支持3路SATA, 前面板1路,可板载2.5″HDD/SSD 硬盘。后插板2路,可扩展SATA设备。前面板提供1个SATA读写指示灯,由3路SATA共用。
- 前面板支持4个USB3.0接口,后出2个USB2.0接口信号。
- 前面板支持1个DB9形式RS232/RS422/RS485接口(配置一支持),后出2路 RS232接口。
- 前面板支持Line-in/Line-out音频接口(仅配置二支持)。
- 前面板支持1个PS/2接口(仅配置一支持)。
- 板卡提供各种板级支持包,包括Windows, Linux, Vxworks等。
- 支持uEFI BIOS 启动。
- 支持RTC实时时钟。

2.2 系统架构图

2.3 可靠性指标

可靠性: MTBF≥30000h; 可维性: MTTR≤30min

2.4 环境性能指标

2.4.1 存储温度

储存温度为-55~+85℃,产品在该温度范围内贮存后不会造成功能及外形损坏。如果用户需要的储存温度高于该指标,采取整板试验的办法进行筛选。

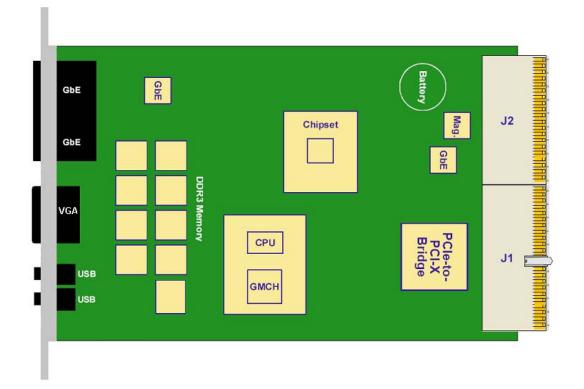
2.4.2 工作温度

工作温度分为两个等级-20~+70℃(工业级),-40~+80℃(宽温级),(高温时,需要做好单板散热工作,使得CPU结温不超过105℃)产品在该温度范围内能正常工作,满足2.1条的功能指标。如果工作温度高于该指标,采取整板试验的办法进行筛选。

2.5 电源要求

使用+5V与+3.3V供电,当直流电压在+5%/-3%范围内变化时,能正常工作,满足2.1条的功能指标。

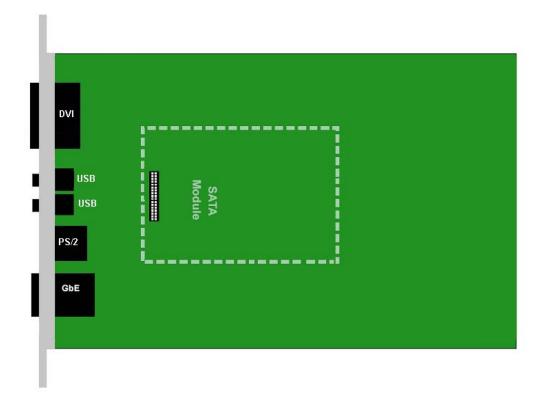
使用 Core i7 3555LE 2.5GHz处理器, 整板最大功耗约40W。

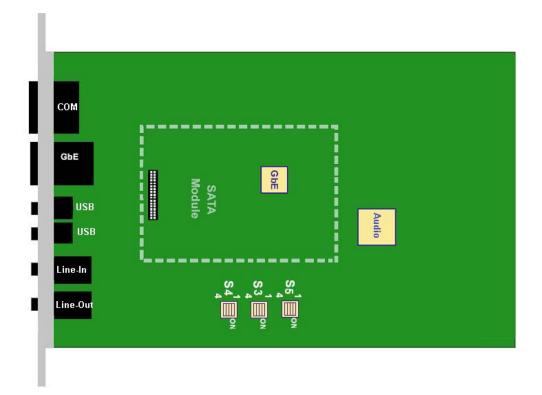

第三章 产品结构及布局

3.1 板卡外形尺寸

板卡外形尺寸: 100mm×160mm ×1.6mm

3.2 板卡元器件布局


3.2.1 板卡正面元器件布局


3.2.2 板卡反面元器件布局

3.2.3 二层板配置一板卡元器件布局

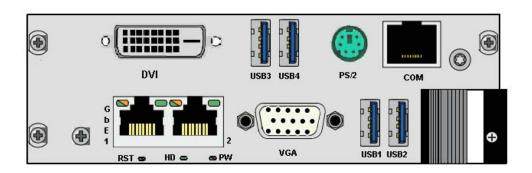
3.2.4 二层板配置二板卡元器件布局

3.3 跳线设置

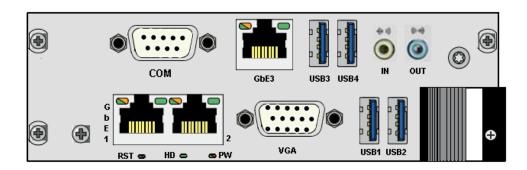
以下配置请在关机模式下操作:

PCI/PCI-X 模式设置:

拨码开关 S1,S2	配置		功能	
	S1-1,S1-2,S1-3:ON	S2-2:ON	PCI 33MHz 模式	
S2 ON	S1-4:OFF S2-1,S2-4:ON S2-3:OFF	S2-2:OFF	PCI 66MHz 模式	


拨码开关 \$1,\$2	配置		功能	
N N	S1-1,S1-2:ON	S1-4:ON	PCI-X 66MHz 模式	
S2 ¹	S1-3:OFF S2-1,S2-4:ON S2-2,S2-3:OFF	S1-4:OFF	PCI-X 133MHz 模式	

串行口 COM2 RS232/RS422/RS485 模式设置:


拨码开关 \$3,\$4,\$5	配置	功能
	S3:ON S4:OFF S5-1:ON, S5-2:OFF,S5-3:OFF	RS232 模式
$\begin{array}{ccc} \mathbf{S}_{5}^{1} & \mathbf{\square}_{0} \\ \mathbf{S}_{4}^{1} & \mathbf{\square}_{0} \\ \mathbf{S}_{4}^{1} & \mathbf{\square}_{0} \\ \mathbf{S}_{4}^{1} & \mathbf{\square}_{0} \\ \end{array}$	S3:OFF S4:ON S5-1:OFF, S5-2:ON, S5-3:OFF	RS422 模式
	S3:OFF (S4-1,S4-2):OFF, (S4-3,S4-4):ON (S5-1, S5-2): OFF, S5-3:ON	RS485 模式

3.4 前面板功能示意图

3.4.1 配置一面板功能示意图

3.4.2 配置二面板功能示意图

状态指示灯:

HD(绿色): 硬盘状态指示灯 PW(绿色): 电源状态指示灯

网络指示灯:

ACT(绿色): 以太网活动状态灯

LINK(绿色/黄色): 以太网链路状态灯

3.4.2 配置一面板 COM 串口信号定义

管脚	RS232 模式	RS422 模式	RS485 模式	接口示意图
1	RTS#	RX+	N/A	
2	DTR#	RX-	N/A	
3	TXD	N/A	N/A	
4	GND	GND	GND	00000000
5	GND	GND	GND	4
6	RXD	N/A	N/A	8 1
7	DSR#	TX-	DATA-	
8	CTS#	TX+	DATA+	

注: COM 口模式通过拨码开关设置。

第四章 使用和维护

4.1 使用前准备

该 CPCI 主板配合 CPCI 机箱或者具有调试功能的配套底板使用。

4.2 开机流程

先插入 CPCI 刀片计算机板卡,接通电源后,电源指示灯亮起(绿色),1s~2s 内计算机开始启动,若硬件检测正常,则开始引导系统。

4.3 正常运行指示

当前面板的 GP 灯为绿色时,则指示计算系统正常运行。

4.4 关机流程

建议使用操作系统关机程序正常关闭计算机,待安全关机后再将电源断开。注意:非法断电关机可能会导致系统崩溃或硬件损坏。

4.5 复位

当操作系统死机或无法进行正常重启操作时,可通过重启开关对计算机进行复位操作。

4.6 CPCI 主板维护

安装 CPCI 主板时,首先要使被安装的板卡的上下边沿卡在导槽里,沿导槽平行推入,在与背板针脚接触时阻力变大,此时适当加力,如果被安装板卡能顺利的与背板针脚结合,再将把手扣合到位;如若感觉阻力较大,适当的加力也无法让板卡与背板针脚结合时,请将板卡拔出,仔细检查背板针脚是否有弯曲。若无针脚弯曲现象,请在导槽允许的间隙内适当调节被安装板卡位置后重新安装。

如果有针脚弯曲,请用镊子将针脚轻轻调正后再重新安装。

4.7 使用注意事项

为确保本计算机的正确使用,操作时要注意:

- 在使用计算机之前务必先详细阅读本说明书;
- 建议 USB 口只接鼠标、U 盘等小功率设备,当需接入较大功率 USB 设备 (如 USB 光驱、软驱、移动硬盘等)时,应使用自带电源供电或通过多个 USB 口取电;
- 应严格按 CPCI 机箱或 CPCI 底板接口要求连接互联线缆;
- 供电电源不能超出额定电压范围;
- 请勿带电插拔信号电缆,以免损坏接口电路;
- 勿让任何东西压住电源线,使电源线远离人经常走动的地方,电源线损 坏时请勿继续使用计算机。

4.8 维护注意事项

- 一般三个月至少通电一次进行自检;
- 请注意病毒防护,避免使用移动存储;
- 出现故障时请先观察电源指示灯的指示是否正确,重新启动时主板自检 提示是否正确;
- 若出现开机电源指示灯不亮、显示器无显示的现象,请先检查电源线是 否接好,并确定机箱或 CPCI 底板功能是否正常;
- 出现故障时,请记录故障的简要情况,查出故障现象的规律,在未确定 故障点前不要对主板和其他插卡随意插拔;
- 一般人员请勿随意拔插主板,只能由专业技术人员打开进行维修;
- 设备进行插卡或检修时,一定要先断开电源;
- 如有无法解决的故障请与本公司联系。

第五章 CPCI 信号接口定义

5.1 J1 信号定义

PIN	Z	Α	В	С	D	Е	F
1	GND	5V	NC	NA	NC	5V	GND
2	GND	NA	5V	NA	NA	NA	GND
3	GND	INTA#	INTB#	INTC#	5V	INTD#	GND
4	GND	NC	Health#	V(IO)	RSV	RSV	GND
5	GND	NC	NC	RST#	GND	GNT0#	GND
6	GND	REQ0#	GND	3.3V	CLK0	AD[31]	GND
7	GND	AD[30]	AD[29]	AD[28]	GND	AD[27]	GND
8	GND	AD[26]	GND	V(IO)	AD[25]	AD[24]	GND
9	GND	C/BE[3]#	NC	AD[23]	GND	AD[22]	GND
10	GND	AD[21]	GND	3.3V	AD[20]	AD[19]	GND
11	GND	AD[18]	AD[17]	AD[16]	GND	C/BE[2]#	GND
12~14			ı	KEY AREA			
15	GND	3.3V	FRAME#	IRDY#	BD_SEL#	TRDY#	GND
16	GND	DEVSEL#	GND	V(IO)	STOP#	LOCK#	GND
17	GND	3.3V	IPMB_SCL	IPMB_SDA	GND	PERR#	GND
18	GND	SERR#	GND	3.3V	PAR	C/BE[1]#	GND
19	GND	3.3V	AD[15]	AD[14]	GND	AD[13]	GND
20	GND	AD[12]	GND	V(IO)	AD[11]	AD[10]	GND
21	GND	3.3V	AD[9]	AD[8]	M66EN	C/BE[0]#	GND
22	GND	AD[7]	GND	3.3V	AD[6]	AD[5]	GND
23	GND	3.3V	AD[4]	AD[3]	5V	AD[2]	GND
24	GND	AD[1]	5V	V(IO)	AD[O]	ACK64#	GND
25	GND	5V	REQ64#	ENUM#	3.3V	5V	GND

5.2 J2 信号定义

PIN	Z	Α	В	С	D	E	F
1	1GND	CLK1	GND	REQ1#	GNT1#	REQ2#	GND
2	GND	CLK2	CLK3	SYSEN#	GNT2#	REQ3#	GND
3	GND	CLK4	GND	GNT3#	REQ4#	GNT4#	GND
4	GND	V(IO)	BRSV	CRT_DDCCLK	NA	NA	GND
5	GND	SATA4_RX-	GND	CRT_VSYNC	NA	SATA5_RX-	GND
6	GND	SATA4_RX+	NA	CRT_GREEN	GND	SATA5_RX+	GND
7	GND	NA	COM2_DSR	CRT_DDCDATA	NA	NA	GND
8	GND	SATA4_TX-	NA	CRT_BLUE	GND	SATA5_TX+	GND
9	GND	SATA4_TX+	GND	CRT_HSYNC	NA	SATA5_TX-	GND
10	GND	NA	COM2_SOUT	CRT_RED	COM2_DTR	NA	GND
11	GND	LAN4_B+	LAN4_B-	COM2_DCD	LAN4_D+	LAN4_D-	GND
12	GND	LAN4_A+	LAN4_A-	NA	LAN4_C+	LAN4_C-	GND
13	GND	LAN3_B+	LAN3_B-	COM2_RI	LAN3_D+	LAN3_D-	GND
14	GND	LAN3_A+	LAN3_A-	COM2_RTS	LAN3_C+	LAN3_C-	GND
15	GND	VCC5	NA	SVIO	REQ5#	GNT5#	GND
16	GND	COM1_DSR	COM1 _RTS	SVIO	GND	COM_RI1	GND
17	GND	COM1_SOUT	COM2_SIN	PRST#	REQ6#	GNT6#	GND
18	GND	COM1_SIN	COM1_DCD	COM1_DTR	COM2_CTS	COM1_CTS	GND
19	GND	GND	GND	PWRBT_IN#	SLP_S3#	VCC3	GND
20	GND	CLK5	GND	USB2-	USB3-	USB3_5V	GND
21	GND	CLK6	GND	USB2+	USB3+	USB2_5V	GND
22	GND	GA4	GA3	GA2	GA1	GA0	GND

备注:

- 1. LAN3_*/LAN4_*: 1000base-T 千兆网络信号,其中 LAN3 为可选网络,需出厂前配置,不支持用户动态配置(备注: LAN3 和 LAN4 在主板端已增加变压器转换)。
- 2. SATA_RXP/RXN*: 主板 SATA 接收信号; SATA_TXP/TXN*: 主板 SATA 发送信号。
- 3. COM1_*/COM2_*:RS232 串口信号。
- 4. PWRBT_IN#: 预留可选后出电源按键开关信号,用于外部按键开关控制主板开关机,此管脚为可选功能。 主板默认上电开机。
- 5. USB*_5V: USB接口5V供电。
- 6. PRST#: 复位输入信号,低电平有效,可用于外部复位主板。主板端已上拉 1K 电阻到 3.3V。